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Abstract. In this study, I experimentally examined how the landscape matrix influenced
the movement, oviposition behavior, and spatial distribution of Anagrus columbi, a common
egg parasitoid of the planthopper Prokelisia crocea. Both species exist among discrete
patches of prairie cordgrass (Spartina pectinata), the sole host plant of P. crocea. Based
on out-planted cordgrass pots bearing host eggs (to assess parasitism) or sticky leaves (traps
for adult A. columbi), I found that the distribution of adult female A. columbi and pattern
of ovipositions within a cordgrass patch were strongly matrix dependent. Female densities
were 59% lower on the edge than interior of patches embedded in a mudflat matrix, but
were evenly distributed within patches embedded in a matrix consisting of either native
grasses or the exotic grass smooth brome (Bromus inermis). In contrast, parasitism was
higher in the interior than edge for patches in all three matrix types. The lack of corre-
spondence between A. columbi density and parasitism was attributed to differences in
oviposition behavior: A. columbi parasitized 71% more hosts per capita in the interior than
edge for patches embedded in nonhost grasses, but equal numbers on the edge and interior
of patches embedded in mudflat. Matrix-dependent differences in the within-patch distri-
bution and oviposition behavior of A. columbi can influence the distribution of parasitism
risk and host–parasitoid stability at the patch level.

Matrix composition also affected the pattern of movement through the matrix and the
colonization of nearby cordgrass patches. Anagrus columbi females emigrating from a
mudflat-embedded patch were captured at very low, but constant, numbers with distance
out into the matrix, suggesting that they were reluctant to enter or remain in the mudflat.
In contrast, A. columbi females entering a nonhost grass matrix had numbers that were high
near the patch border and then declined exponentially with distance. These patterns of
movement were likely responsible for the very different colonization rates for experimental
patches embedded in different matrix types and located 3 m from a source patch of A.
columbi. Patches embedded in brome were colonized at a rate that was 3.0 and 5.7 times
higher than for patches in native grass or mudflat, respectively. Finally, based on a census
of cordgrass patches spanning five generations, A. columbi densities and proportion of
patches occupied generally increased with increasing host density, patch isolation, and the
proportion of the surrounding matrix that was mudflat. Patch size had no effect on the
distribution of A. columbi. Overall, these data suggest that cordgrass patches in a nonhost
grass matrix, particularly smooth brome, have high connectivity relative to patches in a
mudflat matrix. Changes in connectivity due to changes in matrix composition can signif-
icantly influence host–parasitoid persistence at the metapopulation level.

Key words: Anagrus; connectivity; dispersal; edge effect; egg parasitoid; landscape matrix;
metapopulation; patch dynamics; patch occupancy; planthoppers; Spartina; tallgrass prairie.

INTRODUCTION

Among the numerous theoretical studies of predator–
prey dynamics, the consensus is that spatial heterogeneity
can significantly affect the temporal dynamics, stability,
and spatial distribution of populations (reviewed in Til-
man and Kareiva 1997, Hanski 1999, Hassell 2000). The
movement of individuals among patches, which is critical
to these models, is usually assumed to be affected only
by the properties of the patch itself; i.e., patch size, iso-

Manuscript received 26 June 2002; revised 2 October 2002;
accepted 16 October 2002. Corresponding Editor (ad hoc): J. A.
Rosenheim.

1 E-mail: jcronin@lsu.edu

lation, quality, or density of predators or prey (Hanski
1999). This traditional approach ignores the possibility
that the matrix within which these patches are embedded
may influence dispersal processes and hence, the con-
nectivity among patches (Taylor et al. 1993, Roland et
al. 2000, Ricketts 2001). From the vantage point of land-
scape ecology, treatment of the matrix as homogeneous
and unimportant is arguably a major flaw in metapopu-
lation theory (Wiens et al. 1993, Wiens 1997; but see
Molainen and Hanski 1998).

For insect herbivores distributed among host-plant
patches, the matrix is often heterogeneous, consisting
of a complex mosaic of land cover types. Some matrix
types may be resistant and favor low rates of interpatch
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movement whereas others may be benign (i.e., have
low resistance) and favor high rates of movement. For
a single species, the level of matrix resistance may
dictate whether the ensemble of subpopulations form
a metapopulation or a single patchy population (Har-
rison and Taylor 1997). For a predator and its prey,
differential effects of the matrix on their respective
dispersal abilities can profoundly impact regional sta-
bility (e.g., Reeve 1988, Comins et al. 1992). Reeve
(1988), for example, demonstrated that host–parasitoid
interaction persistence can be maintained in the ab-
sence of regulatory processes if parasitoid dispersal
among patches is greater than that of its host. Whereas
a number of studies have identified the effects of matrix
composition on the movement patterns of herbivores
among host-plant patches (e.g., Kareiva 1985, Jonsen
et al. 2000, Roland et al. 2000), no studies have ex-
perimentally quantified its effects on interacting spe-
cies.

In addition to influencing dispersal, matrix compo-
sition is likely to also affect the among- and within-
patch distributions of herbivores and their enemies. Oc-
cupancy rates and densities are likely to be higher for
patches embedded within a low- than a high-resistance
matrix (e.g., Kareiva 1985, Jonsen et al. 2000). In the
former matrix type, high immigration should promote
the rescue effect and the rapid recolonization of vacant
patches (Brown and Kodric-Brown 1977, Hanski
1999). Within a patch, some matrix types may inhibit
emigration (i.e., the patch edge is impermeable or re-
flecting; Stamps et al. 1987) and cause organisms to
accrue near the patch boundary (Cantrell and Cosner
1999). Other matrix types may foster high patch per-
meability and the absence of a density edge effect. The
study of edge effects has grown in recent years with
the recognition that these effects can significantly in-
fluence movement patterns, species interactions, and
community structure (Fagan et al. 1999). Edge effects
have been commonly reported for insect herbivores
(e.g., Cappuccino and Root 1992, Roland and Kaupp
1995, Cappuccino and Martin 1997), and in some cases
there is evidence that the effects are transmitted to
higher trophic levels (e.g., Lovejoy et al. 1984, Bolger
et al. 2000). If the edge effect is moderated by the type
of matrix, predator–prey interactions may be landscape
dependent (see Tscharntke et al. 2002). To advance our
understanding of predator–prey interactions at the land-
scape level, studies are needed that explore how the
matrix influences aspects of interpatch movement (e.g.,
emigration, immigration, patterns of spatial spread) and
spatial distributions for both species.

In the tall-grass prairies of the midwestern United
States, the planthopper Prokelisia crocea (Van Duzee)
(Hemiptera: Delphacidae) is distributed among very
discrete patches of its host plant, prairie cordgrass
(Spartina pectinata Link [Poaceae]) (Cronin 2003a, b).
Within the prairie landscape, cordgrass patches are em-
bedded in one of three basic matrix types: (1) mudflats

(sometimes inhabited by saltwort [Salicornia rubra
Nels.], (2) a mixture of native grass species (primarily
Andropogon scoparius Michx., A. gerardii Vitman, and
Agropyron smithii Rydb.), and (3) the exotic grass,
smooth brome (Bromus inermis Leyss). Brome is sim-
ilar in stature and appearance to cordgrass, and both
species are taller than most native grasses (Wilson and
Belcher 1989). Planthopper adults are 90% macrop-
terous and quite mobile. The number of immigrants
increases with patch area (even single-stem patches are
colonized and oviposited within) and is generally un-
affected by patch isolation (Cronin 2003b). In a series
of field experiments, K. J. Haynes and J. T. Cronin
(unpublished manuscript) found that planthopper em-
igration and immigration rates were highest for patches
embedded in nonhost grasses and lowest for patches
in mudflat. We also found a matrix-dependent edge
effect: planthoppers were generally more abundant at
the patch edge relative to the interior for patches in
mudflat, but not for patches in nonhost grasses.

In this study, I experimentally examined how the
landscape matrix influences the movement and spatial
distribution of Anagrus columbi Perkins (Hymenop-
tera: Mymaridae), a common egg parasitoid of P. cro-
cea (Cronin 2003a). First, I assessed whether an edge
effect (in terms of A. columbi density, per capita ovi-
position rate, and proportion of hosts parasitized) oc-
curred among cordgrass patches and whether those ef-
fects were matrix dependent. Second, I estimated A.
columbi colonization rates of experimental cordgrass
patches that were positioned 3 m away from natural
cordgrass patches embedded in each of the three matrix
types. Third, patterns of spatial spread through each
matrix type were quantified. Fourth, I determined the
effects of landscape structure (patch size, isolation, and
matrix composition) on A. columbi density and occu-
pancy among patches using five generations of census
data. Finally, I addressed how the response to the ma-
trix by A. columbi and its host might impact patch
connectivity and the spatial and temporal population
dynamics of this host–parasitoid interaction.

METHODS

Life history

Prokelisia crocea is a monophagous phloem-feeder
and dominant herbivore of prairie cordgrass throughout
the plant species’ range (Holder and Wilson 1992, Cro-
nin 2003a, b). In North Dakota, planthoppers overwin-
ter as first instar nymphs, reach peak adult densities in
early June, and then lay eggs beneath the adaxial sur-
face of cordgrass leaves (Cronin 2003a, b). A second
generation follows, with adults peaking in early Au-
gust. The most obvious natural enemy of P. crocea is
A. columbi. Parasitism rates per cordgrass patch range
from 0% to 100%, with an average of 21% (Cronin
2003a). In general, A. columbi searches for hosts at
random within a cordgrass leaf, demonstrates no ability
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FIG. 1. Diagram of matrix experiment. Potted cordgrass
with planthopper eggs (open circles) or Tanglefoot (closed
circles) on leaves formed each transect (interior, edge, and
matrix). The design was replicated 10 times in each of three
matrix types: mudflat, native grasses, or brome.

to avoid superparasitism, and displays a type I func-
tional response over the range of hosts normally found
in the field (Cronin 2003a). Although A. columbi has
been recorded as a parasitoid of several planthopper
species (Krombein et al. 1979), in northeastern North
Dakota, it appears to attack only P. crocea residing
within cordgrass patches (Cronin 2003a).

Matrix experiment

This experiment was designed to quantify the dis-
tribution of A. columbi adults and parasitized hosts
within cordgrass patches embedded in different matrix
types, and to estimate the effects of different matrix
types on colonization rates of experimental cordgrass
patches. I selected 10 large cordgrass patches (at least
40 m2 in area) that were embedded in each of three
matrix types (mudflat, native grass, brome). All patches
had a very distinct cordgrass-matrix edge and were
separated from each other by a minimum of 50 m.
Given the limited dispersal ability of A. columbi (Cro-
nin 2003a), the use of large patches was expected to
lessen the importance of patch shape in affecting this
parasitoid’s movement and distribution within a patch.

Transects of potted cordgrass plants were placed in
parallel at 2 m into the interior, the edge, and 3 m out
into the matrix of each patch (Fig. 1). Within a transect,
host pots (pots with host-infested leaves; n 5 3) and
trap pots (pots with sticky leaves; n 5 3) were used to
assess A. columbi parasitism and density per leaf, re-
spectively. The creation of these pots and their validity
in assessing these parasitoid traits are described in Ap-
pendix A. Host and trap pots were left in the field for

7 d to capture A. columbi and accumulate parasitism.
After the pots were collected and returned to the lab-
oratory, I censused the 30 cordgrass patches for stem
densities, host densities, and parasitism. I placed a
0.25 3 0.25 m sampling frame in three randomly cho-
sen locations along the interior and edge transects,
counted the number of cordgrass stems, and collected
all of the leaves that were naturally infested with plant-
hopper eggs. Stem densities (on a per square meter
basis) at each transect location within a patch were
determined from the average number of stems per sam-
pling frame. In the laboratory, the sticky leaves from
trap pots were examined with a dissecting microscope
and the number of male and female A. columbi counted.
After a 5-d incubation period, the leaves from host pots
and naturally infested leaves from the census were dis-
sected to determine the number of healthy and para-
sitized hosts. I note here that at the time of this study,
planthoppers were almost entirely in the egg stage.
Therefore, eggs laid by resident planthoppers onto pot-
ted cordgrass plants did not take place with any mea-
surable frequency.

For each transect location, I used the data obtained
from the experimental host pots and trap pots to com-
pute the following transect means (on a per-leaf basis):
(1) number of female A. columbi immigrants, (2) pro-
portion of hosts parasitized, and (3) number of hosts
parasitized per female A. columbi (mean number of
hosts parasitized per leaf/mean number of A. columbi
captured per leaf). Finally, for each transect separate
measures of mean host egg density, number of hosts
parasitized, and proportion parasitized were deter-
mined for the naturally occurring planthopper-infested
leaves.

The effect of matrix type within which a patch was
embedded and transect location (interior, edge, or ex-
terior) on A. columbi density, proportion parasitized,
and per capita host parasitized were evaluated with
separate profile ANOVAs. Here, profile ANOVA is a
multivariate test (comparable to a repeated-measures
ANOVA; Simms and Burdick 1988) that allows for the
three transects associated with each patch to be non-
independent (they share a common environment and
are potentially correlated in A. columbi density and
parasitism). The responses within each transect (e.g.,
proportion of hosts parasitized) were the dependent
variables and the matrix type was the independent var-
iable. Density and per capita parasitized were ln-trans-
formed and proportion parasitized was arcsine square-
root transformed to achieve normality and homogeneity
of variances. To evaluate differences between two ma-
trix types (e.g., brome vs. mudflat), I used the same
profile ANOVA model but with only these two matrix
types included. Contrasts between the edge and interior
(edge effects) and the interior and matrix were eval-
uated for patches embedded in each matrix type using
paired t tests. To ensure that the Type I error rate for
each profile ANOVA and contrast (within a matrix) did
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not exceed the nominal rate of 0.05, Bonferroni se-
quential corrections were used to assess significance
(Sokal and Rohlf 1995).

Finally, the ability of A. columbi to successfully dis-
perse from one of the large natural cordgrass patches
(10 per matrix type) to an experimental patch located
3 m into the matrix was obtained from trap-plant cap-
tures. Because the 10 cordgrass patches per matrix were
relatively isolated from other native cordgrass (mini-
mum of 50 m), each likely represented the primary
source of A. columbi that colonized the potted cord-
grass associated with it. Therefore, my index of col-
onization rate was the ratio of mean A. columbi captures
per leaf in the matrix transect and the mean captures
per leaf within the source patch ([interior mean 1 edge
mean]/2). Because the distribution of this index could
not be normalized (due to a disproportionate number
of zeros and a right skew), the effect of matrix com-
position on the colonization rate was evaluated with a
Kruskal-Wallis test (Sokal and Rohlf 1995). Mann-
Whitney U tests (Bonferroni-corrected) were used for
all pairwise contrasts.

Movement through the matrix

To assess how the matrix influences interpatch move-
ment of A. columbi, I performed an experiment that
quantified the pattern of spatial spread from cordgrass
patches embedded in a mudflat or native grass matrix.
Large cordgrass patches were selected from the edge
of a prairie fragment. Yellow sticky traps (8 3 13 cm
Dayglo Saturn yellow index cards coated with Tangle-
foot, Tanglefoot Company, Grand Rapids, Michigan)
attached to the tops of 0.5-m tall PVC poles were used
to capture dispersing A. columbi. The traps were po-
sitioned along a transect at 5 m within the patch, the
patch edge, and at 2, 5, 10, 20, and 30 m away from
the patch (and in the opposite direction of other native
cordgrass patches). Trap transects were placed in as-
sociation with six mudflat- and six native grass-bor-
dered patches and were deployed in the field for 2 wk,
corresponding to the peak activity of A. columbi. The
number of female A. columbi captured in each transect
j and trap distance d, Cjd, was converted to a proportion:
Pjd 5 Cjd/Nj; where Nj 5 total number of A. columbi
captured in transect j.

The effect of matrix type (mudflat or native grass)
and trap distance on the proportional recaptures (ln
[Pjd]) was evaluated with a profile ANOVA. As in the
previous experiment, traps located at different distanc-
es from the same patch could not be considered sta-
tistically independent. Tests for differences between
matrix types at each trap distance (e.g., mudflat edge
vs. native grass edge) were evaluated with separate
two-sample t tests (Sokal and Rohlf 1995). The critical
value of a for each test was adjusted using a sequential
Bonferroni correction to achieve an overall error rate
of 0.05.

Finally, I compared the distribution of Pjd for each
matrix type with the pattern of spatial spread predicted
by a simple diffusion model. Turchin and Thoeny
(1993) provided the derivation for the following ana-
lytical formula for predicting spatial spread based on
cumulative recaptures (see also Okubo 1980): Pjd 5
Ad21/2e2d/B. Here, A is a scaling parameter and is pro-
portional to the product of the source population and
the recapture efficiency. B is a measure of the spatial
scale of dispersal and is equal to the square root of the
ratio of the diffusion rate and the disappearance rate
(death or emigration from the experimental area). An
insect population with a large value of B would have
a greater dispersal range than one with a smaller B.
The model above has the linear form, ln(Pjd) 1 ½ln(d)
5 ln(A) 2 d/B, and can be fit using least-squares re-
gression (Sokal and Rohlf 1995).

Landscape effects on spatial distribution

The effects of landscape structure (patch size, patch
isolation, and matrix type) and planthopper egg density
on the distribution of A. columbi among cordgrass
patches was evaluated from census data that spanned
five generations (mid-1999 through the end of 2001)
and 147 cordgrass patches. The census took place in a
single prairie fragment (Site 104), a 65-ha area adjacent
to Kelly’s Slough National Wildlife Refuge in north-
eastern North Dakota (47.94184 N, 97.31036 W). Ev-
ery generation, I ascertained the presence/absence and
density of P. crocea (eggs) and A. columbi (parasitized
hosts) for each cordgrass patch (see Appendix B for
details). In addition, each patch was characterized by
its size (measured in square meters), isolation from
nearest neighbor patches, and composition of the sur-
rounding matrix (Appendix B). Because mudflat was
the most different matrix with regard to A. columbi
distributions (relative to the two nonhost grass matri-
ces; see Results), I chose to use the proportion of buffer
habitat composed of mudflat as my index of matrix
composition (see also Moilanen and Hanski 1998). For
each generation, I quantified the effect of landscape
structure (patch size, patch isolation, and proportion of
matrix that is mudflat) and planthopper egg density on
two dependent variables: A. columbi density and patch
occupancy. Least-squares regression was used for the
former, and logistic regression for the latter, dependent
variable (details are provided in Appendix B).

RESULTS

Matrix experiment

On average, A. columbi density (number of females
per trap-pot leaf) within a patch was independent of
the composition of the surrounding matrix (Table 1,
Fig. 2A). However, the distribution of A. columbi with-
in a patch was very strongly matrix dependent, as in-
dicated by the significant matrix 3 transect interaction
(Table 1). For patches embedded in a mudflat, densities
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TABLE 1. Results from separate profile ANOVAs for the
effect of matrix type and transect location within a patch
on ln(parasitoid density), angular-transformed proportion
of hosts parasitized, and ln(per capita parasitized).

Source of variation df MS F P

Parasitoid density
Among patches

Matrix
Error

2
27

14.43
4.04

3.57
3.33

0.042

Within patches
Transect
Transect 3 matrix
Error

2
4

54

19.80
8.01
1.50

13.22
5.35

,0.001†
0.001†

Proportion parasitized
Among patches

Matrix
Error

2
27

0.09
0.01

6.63 0.005†

Within patches
Transect
Transect 3 matrix
Error

2
4

54

0.32
0.04
0.01

33.21
4.63

,0.001†
0.003†

Per capita parasitized
Among patches

Matrix
Error

2
6

6.21
3.82

1.63 0.273

Within patches
Transect
Transect 3 matrix
Error

2
4

12

23.24
8.09
1.08

21.46
7.47

,0.001†
0.003†

Notes: A Type I error rate for all three ANOVAs combined
was maintained at a 5 0.05 by using a sequential Bonferroni
correction. A significant P value is indicated with †.

FIG. 2. (A) Parasitoid densities, (B) proportion of hosts
parasitized, and (C) per capita number of hosts parasitized
for patches embedded in three different matrices (mudflat, a
mixture of native grass species, and smooth brome). Patch
positions include 2 m into the interior, the edge, and 3 m into
the matrix. Means 6 1 SE are reported.

declined by 59% from the interior to the edge (based
on the mean proportional difference between transect
pairs), a significant density edge effect (Fig. 2A, Ap-
pendix C). In the mudflat matrix, A. columbi density
was 84% lower than in the patch interior. In contrast,
there was a gradual decline in A. columbi density be-
tween the interior and matrix for patches in native
grasses (no edge effect evident; Appendix C), and no
change in density among transects for the patches in
brome (Fig. 2A). Overall, the density distribution of
A. columbi adult females among transects within a
patch was indistinguishable between patches embedded
in mudflat and native grass (as determined from the
transect 3 matrix interaction term from a profile AN-
OVA that included only these two matrix types;
F2,36 5 1.95, P 5 0.158) and between native grass and
brome (F2,36 5 3.17, P 5 0.054); but the difference
was significant between mudflat and brome (F2,36 5
11.51, P , 0.001).

The colonization rate index for experimental cord-
grass patches located 3 m away from a source patch
was matrix dependent (Kruskal-Wallis statistic 5 6.82,
df 5 2, P 5 0.030). Patches in brome had the highest
rate (0.85 6 0.27; mean 6 1 SE), followed by native
grasses (0.29 6 0.14), and finally mudflat (0.10 6
0.05). Only the rate in brome and mudflat was signif-

icantly different (Mann-Whitney U statistic 5 53.00,
df 5 1, P 5 0.009).

In contrast to the density distribution of A. columbi,
the distribution of parasitism was matrix dependent
(Table 1, Fig. 2B). The proportion of hosts parasitized
per leaf averaged (all transects combined) 0.17 6 0.02,
0.12 6 0.03, and 0.06 6 0.02 for patches in mudflat,
native grass, and brome, respectively. Only the pro-
portion for patches in mudflat and brome was signifi-
cantly different (F1,18 5 7.42, P 5 0.014). For all three
matrix types, parasitism declined significantly from the
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FIG. 3. Natural host-egg densities (mean per stem 6 SE)
in relation to the type of matrix within which a patch is
embedded and transect location (2 m into the patch interior
or at the patch edge). Based on a profile ANOVA, ln(egg
densities) were significantly affected by the matrix (F2,27 5
4.41, P 5 0.022) but not by transect location (F1,27 5 2.63,
P 5 0.117). There was no interaction between the matrix and
transect location (F2,27 5 0.98, P 5 0.388).

FIG. 4. The proportion of A. columbi captured with re-
spect to distance from the patch edge for two matrices, mud-
flat and native grass. Means 6 1 SE are reported. Based on
a profile ANOVA, trap distance and the interaction between
trap distance and matrix type (F6,49 5 68.90, P , 0.001 and
F6,49 5 14.54, P , 0.001; respectively), but not matrix type
(F1,10 5 4.34, P 5 0.064), affected the proportion captured
(ln-transformed prior to analysis). Significant differences be-
tween matrix types at a given distance are denoted by ***
(in all cases P , 0.001; based on separate two-sample t tests
with a sequential Bonferroni correction of a).

patch interior to 3 m out into the matrix (Table 1, Fig.
2B). On average, parasitism was 48% higher on the
patch interior than the edge. A significant edge effect
in parasitism was found for patches in mudflat and
native grass but not for patches in brome (Appendix
C). As with A. columbi density, I found that the dis-
tribution of parasitism among transects was matrix de-
pendent (significant matrix 3 transect interaction; Ta-
ble 1). Parasitism declined more steeply from the in-
terior to the matrix for mudflat-, than for native grass
or brome-embedded patches; however, no significant
difference could be found between any two matrix
types.

Finally, the per capita hosts parasitized was similar
across matrix types, but declined significantly with dis-
tance from the patch interior to the matrix (Table 1,
Fig. 2C). For all matrix types combined, an average of
44.1 6 13.0 hosts were parasitized per female A. col-
umbi per leaf in the patch interior, 22.4 6 6.0 hosts
parasitized at the edge, and 12.8 6 4.7 hosts parasitized
in the matrix. Matrix type affected the per capita par-
asitized only through its interaction with transect lo-
cation (Table 1). Most notably, a significant edge effect
in the per capita parasitized was found for patches em-
bedded in native grass and brome, but not in mudflat
(Appendix C). Differences in the distribution of female
A. columbi may have explained these patterns. Within
a patch (all matrix types combined), the per capita hosts
parasitized was negatively correlated with female A.
columbi density (R 5 20.41, n 5 60, P 5 0.020).

Differences in the distribution of A. columbi females,
parasitism and per capita parasitized between the patch

interior and edge, could have been influenced by the
density of hosts present on naturally occurring cord-
grass plants. (Anagrus columbi larvae in naturally oc-
curring hosts were too immature to represent a source
of adult parasitoids during the weeklong study; thus,
they likely did not play a part in causing the patterns
observed in Fig. 2.) Egg densities on natural plants
(numbers/stem) were independent of location within a
patch, but highly dependent upon matrix type (Fig. 3).
Despite these differences, profile ANOVAs (matrix
type and transect within a patch as the main effects)
performed with and without the density of naturally
occurring hosts (ln [mean of edge and interior sam-
ples]) included as a covariate led to the same conclu-
sions (not reported). Therefore, naturally occurring
hosts had no effect on the results reported above.

Movement through the matrix

The pattern of A. columbi captures-with-distance dif-
fered fundamentally between a native grass and mudflat
matrix, based on the significant matrix 3 trap distance
interaction term (Fig. 4). In the grass matrix, captures
declined gradually from the patch interior to 30 m out
into the matrix. There was no difference in A. columbi
captures between the patch interior and edge of grass-
bordered patches (Fig. 4), corroborating findings in the
previous experiment. The linear form of the simple
diffusion model provided a significant fit to the combined
capture data in the grass matrix: for distances between 2
and 30 m from the patch edge, y 5 20.04x 2 0.96
(R2 5 0.32, P , 0.001). The addition of a quadratic
term did not improve the model fit. For mudflat-em-
bedded patches, the proportion captured dropped steep-
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TABLE 2. The effect of landscape structure (patch size, isolation, and percentage adjacent
matrix that is mudflat) and host density (eggs/stem) on A. columbi density (parasitized hosts/
stem) or whether or not a patch was occupied by A. columbi.

A. columbi
Genera-

tion n

Model statistics

R2† P value

Significance of independent variables

Patch
size Isolation %Mud Hosts

Density 1999, 2
2001, 1
2000, 2
2001, 1
2001, 2

25
86
86
82
···

0.593
0.640
0.725
0.900

···

,0.001
,0.001
,0.001
,0.001

···

0.029
0.456
0.233
0.773

···

0.849
0.015
0.003
0.016

···

0.462
0.010

,0.001
,0.001

···

0.010
,0.001
,0.001
,0.001

···

Occupancy 1999, 2
2000, 1
2000, 2
2001, 2
2001, 2

···
84
89
73

104

···
0.102
0.430
0.454
0.111

···
0.134

,0.001
,0.001

0.049

···
0.528
0.819
0.150
0.469

···
0.171
0.008
0.282
0.913

···
0.955
0.042
0.008
0.965

···
0.097
0.009
0.002
0.019

Notes: Least-squares regression was used for the continuous variable parasitoid density, and
logistic regression was used for patch occupancy frequencies. To control for Type I errors
associated with conducting two tests per generation on the same data set, the critical value of
a for rejection of the null hypothesis was set at 0.025. P values in bold were deemed statistically
significant.

† For logistic regression analyses, McFadden’s r2 is reported instead of R2.

ly from the interior to 5 m out into the matrix, and then
remained relatively constant with distance out to 30 m.
Because captures did not continue to decline with dis-
tance, the slope of the simple diffusion model was not
significantly different from zero (y 5 0.03x 2 2.03;
R2 5 0.11, P 5 0.087).

Landscape effects on spatial distribution

The distribution of A. columbi among cordgrass
patches was well fit by a model that included features
of the landscape (patch size, patch isolation, matrix
composition) and host egg density. Among the four
generations that tests were possible, the model ex-
plained an average of 71.5 6 6.8% of the variation in
A. columbi distributions among patches (based on mod-
el R2; Table 2). Clearly the most important factor in
the model was host egg density. In all generations, A.
columbi densities increased significantly with increas-
ing numbers of hosts, and this variable alone explained
59.2 6 5.0% of the total variation in parasitoid den-
sities. The proportion of the matrix that was bare
ground (mudflat) and patch isolation had significant
effects on A. columbi density (independent of host
abundance), explaining 7.4 6 3.3% and 4.9 6 3.0% of
the total variation in density, respectively (Table 2).
On average, A. columbi densities increased with an
increase in the proportion of the matrix that was mudflat
and with isolation. Patch size had no effect on A. col-
umbi numbers per cordgrass stem.

Patch occupancy frequencies changed substantially
over the course of this study. Of the host-infested patch-
es, 100% was occupied by A. columbi in 1999 (con-
sequently no logistic regression was performed), 86%
in 2000 (generation 1), 88% in 2000 (generation 2),
74% in 2001 (generation 1), and 19% in 2001 (gen-
eration 2). The only factor that had a consistent influ-

ence on the likelihood that a cordgrass patch was oc-
cupied by A. columbi (given that hosts were present)
was host density (Table 2). For all but one generation
(2000, generation 1, P 5 0.097), the frequency of
patches occupied by A. columbi increased significantly
with increasing host density. Overall, the logistic re-
gression model explained an average of 27 6 10% of
the variation in presence/absence of A. columbi among
cordgrass patches (based on McFadden’s r2).

DISCUSSION

Matrix effects on A. columbi movement
and distribution

In the tall-grass prairies of the Great Plains, the land-
scape matrix appears to have a significant effect on A.
columbi movement and spatial distribution within and
among cordgrass patches. Within mudflat-bordered
patches, A. columbi densities were high in the patch
interior relative to the patch edge, and were extremely
low in the mudflat matrix. In contrast, no edge effect
in A. columbi density was evident in matrix composed
of nonhost grasses; and for brome-embedded patches,
A. columbi densities were just as high 3 m out in the
matrix as in the patch interior. These data suggest that
the mudflat edge is not only hard, but possibly repellent
(Stamps et al. 1987). Brome edges, and to a lesser
extent native grass edges, appear softer and more per-
meable. Brome is similar in stature and appearance to
cordgrass and it is possible that A. columbi does not
readily distinguish between these two plant species.
The reason that brome has a low resistance to emi-
grating A. columbi remains unknown.

For patches embedded in all matrix types, parasitism
was generally greater on the patch interior than the
edge, and this effect was independent of host density.
However, the mechanisms generating this edge effect
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differed between cordgrass patches embedded in mud-
flat and nonhost grass matrices. In mudflat-embedded
patches, similar per capita numbers of hosts parasitized
between the patch edge and interior (Appendix C), cou-
pled with higher A. columbi densities in the interior,
likely explained the edge effect (see Fig. 2A). For
patches embedded in native grasses or brome, a greater
proportion of hosts parasitized in the interior relative
to the edge, was likely brought about by an even dis-
tribution of A. columbi within the patch coupled with
a 71% higher per capita attack rate in the patch interior
than the edge. At this point, I do not know the cause
for matrix-dependent edge effects in A. columbi ovi-
position behavior. One possibility is that factors that
disrupt oviposition behavior (e.g., predators or wind
gusts) may be greater at the patch edge than the interior
(e.g., Bowers and Dooley 1993, Burkey 1993). In mud-
flat edges, those factors may cause A. columbi to dis-
perse to the patch interior, whereas in nonhost grass
edges those factors may serve only to reduce successful
ovipositions. Another possibility is interference among
searching parasitoids (Visser et al. 1999, Hassell 2000).
For all matrix types combined, A. columbi density
among interior and edge transects was negatively cor-
related with per capita hosts parasitized. Parasitoid in-
terference, however, could not have accounted for the
low per capita attacks 3 m into the mudflat and native
grass matrices where A. columbi densities were also
low (Fig. 2B).

Edge effects, such as those found with regard to A.
columbi densities and parasitism, are evident in a num-
ber of other arthropod-predator systems (e.g., Mc-
Geoch and Gaston 2000, Tscharntke et al. 2002). The
potential population consequences of an edge effect can
be manifold (Fagan et al. 1999). In this study system,
both the planthopper and A. columbi exhibit a signif-
icant density edge effect only in mudflat-embedded
patches; however, they have opposite responses to a
mudflat edge (this study, see Results; K. J. Haynes and
J. T. Cronin, unpublished manuscript). Planthoppers
tend to aggregate at the edge, and A. columbi in the
interior, of cordgrass patches. By altering the distri-
bution (or ratio) of A. columbi relative to its host, the
matrix may indirectly influence a number of factors
linked to host–parasitoid stability, including parasitoid
functional responses (Kaiser 1983, Abrams 1993), prey
outbreaks (Kareiva and Odell 1987), and the distri-
bution of parasitism risk (Hassell et al. 1991, Pacala
and Hassell 1991). In a separate study (Cronin 2003a),
I found that the distribution of parasitism risk (the co-
efficient of variation squared in the probability of par-
asitism among cordgrass leaves) was much more het-
erogeneous on the patch edge than the interior; in-
creased heterogeneity in parasitism can be theoretically
stabilizing (Pacala and Hassell 1991; but see Murdoch
and Stewart-Oaten 1989, Gross and Ives 1999).

In addition to its effect on within-patch distributions
and behavior of A. columbi, the matrix also appears to

have a substantial impact on interpatch movement of
this parasitoid. In a nonhost grass matrix, A. columbi
captures were reasonably well described by a simple
diffusion model, a common pattern of redistribution
for insect species (Turchin 1998). Movement by A. col-
umbi is predominantly at or below the vegetation can-
opy; traps positioned above the canopy capture few
individuals (unpublished data). In contrast, of the few
female A. columbi that emigrated into a mudflat matrix,
captures were distant independent and nondiffusive.
This pattern of captures-with-distance from a source
would be expected if insects displayed nonrandom di-
rectional movements with long step lengths (see Tur-
chin et al. 1991). Linear movement paths in resource-
free or open matrices may be a common pattern among
foraging insects (Zalucki and Kitching 1982, Jonsen
and Taylor 2000). Under these circumstances, coloni-
zation rates of nearby patches embedded in a mudflat
matrix likely would be lower than in a nonhost grass
matrix where movement is more diffusive, provided
that long-range attraction to host sources is similar be-
tween matrix types. This is precisely the result ob-
served in my experiment: relative colonization rates of
cordgrass patches located 3 m away from a source patch
were more than five times greater in brome and two
times greater in native grasses than in mudflats.

To date, few landscape studies have looked beyond
simply quantifying turnover rates among patches em-
bedded in different matrices and have attempted to
quantify the behavioral bases for matrix effects (but
see Crist et al. 1992, Ims 1995, Wiens et al. 1995, 1997,
Jonsen and Taylor 2000). The present study is only a
first step toward understanding the mechanistic basis
for how the matrix influences A. columbi emigration
(e.g., mudflat edge is less permeable than a brome
edge), and interpatch movement (e.g., diffusion in non-
host grasses, something else entirely in mudflats). Be-
havioral studies at the individual level are needed to
further resolve the mechanisms underlying differences
in matrix resistance to dispersing A. columbi (see also
Gustafson and Gardner 1996).

Anagrus columbi spatial distribution

It is clear from the five-generation survey of cord-
grass patches within a 65-ha prairie fragment that the
distribution of A. columbi is tightly linked to the dis-
tribution of its host, eggs of P. crocea. In all five gen-
erations, almost 60% of the variation in A. columbi
abundance (parasitized hosts) was explained by host
density. Lei and Hanski (1997) similarly found that
abundances of the braconid parasitoid Cotesia meli-
taearum and its host, the Glanville fritillary Melitaea
cinxia, were highly correlated among patches of dry
meadow.

Features of the landscape were also important in de-
termining the distribution of A. columbi, but their com-
bined effects accounted for only ;12% of the variation
in abundances among patches. I found that the greater
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the percentage of the nearby matrix that was mudflat,
the more dense the local A. columbi population. Be-
cause A. columbi is less inclined to emigrate from
patches in mudflat than in nonhost grasses, it was ex-
pected that local populations would build to higher
levels in the former than the latter patches. Of equal
importance to the matrix in determining A. columbi
abundance was patch isolation. In contrast to the find-
ings of many other studies (reviewed in Hanski 1999),
isolated cordgrass patches tended to harbor greater A.
columbi densities. This counterintuitive result is un-
derstandable in light of the dispersal and oviposition
behavior of A. columbi. I (Cronin 2003a) previously
found that the number of A. columbi immigrants de-
clined with distance from a source patch. A reduction
in number of colonists in an isolated patch, however,
was compensated for by a substantial increase in per
capita oviposition rates (see also Cronin and Strong
1999). If isolation further reduced the propensity to
emigrate, a buildup of A. columbi densities that is great-
er than in nonisolated patches would be expected. Fi-
nally, the absence of a patch size effect on A. columbi
density corroborates previous experimental studies that
found only weak effects of patch size on A. columbi
immigration and oviposition behavior (Cronin 2003a).
These studies reveal the importance of experimental
data in interpreting insect distributional patterns in na-
ture (see also Lei and Camara 1999, Doak 2000a, b).

Host–parasitoid patch connectivity

Predator–prey persistence in a spatially subdivided
habitat can depend critically upon the relative rates of
dispersal of both species (e.g., Reeve 1988, Comins et
al. 1992, Holyoak and Lawler 1996). The intervening
matrix may therefore greatly affect population dynam-
ics by differentially influencing patch connectivity for
a prey (host) species and its predator (parasitoid). In a
companion study, K. J. Haynes and J. T. Cronin (un-
published manuscript) experimentally quantified the
effects of the matrix on P. crocea emigration, immi-
gration, and within-patch distribution. In general, P.
crocea and A. columbi transfer processes were affected
in qualitatively the same way by matrix heterogeneity.
Mark–release–recapture experiments revealed that
patches embedded in mudflat have lower planthopper
emigration and immigration rates than comparable
patches embedded in brome or native grasses. In the
present study, the scarcity of A. columbi at the patch
edge and in the mudflat matrix may indicate a low
emigration rate, or alternatively, the rapid disappear-
ance of emigrant A. columbi from the vicinity of a
patch. In contrast, higher A. columbi densities in the
brome than mudflat matrix may have been due to high
emigration rates or a propensity for emigrants to remain
near their patch of origin. At the spatial scale of several
meters from a source patch, these data suggest that
patch connectivity for P. crocea and A. columbi is low

in a mudflat matrix and high in a brome matrix; native
grasses tend to have intermediate connectivity.

In landscapes dominated by native matrix types (na-
tive grasses and mudflat), the spatial structure of P.
crocea is best described as a mainland–island meta-
population with moderately high connectivity (Cronin
2003b). Because A. columbi appears to track host abun-
dances, it likely exhibits the same population structure,
although, A. columbi is more dispersal limited than its
host (Cronin 2003a). For landscapes in which brome
has displaced native matrix vegetation, the expected
increase in patch connectivity (see above) is likely to
cause a shift in the spatial structure of these two species
from a mainland–island metapopulation to a patchy
population (Harrison and Taylor 1997, Thomas and Ku-
nin 1999). Increased patch connectivity due to this
change in matrix composition is predicted to lead to
high spatial synchrony, low host abundances, and low
interaction persistence at a regional scale (Holyoak and
Lawler 1996, Harrison and Taylor 1997, Holyoak 2000,
Nachman 2001). Exotic plant species such as smooth
brome, which are becoming prevalent components of
ecosystems worldwide (Drake et al. 1989, D’Antonio
and Vitousek 1992), may be playing an important role
in affecting the spatial structure and dynamics of pop-
ulations of native herbivores and their natural enemies.
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APPENDIX A

Details on creation of host pots and trap pots for use in estimating A. columbi parasitism and density, respectively, are
presented in ESA’s Electronic Data Archive: Ecological Archives E084-039-A1.

APPENDIX B

Census procedure and analyses of A. columbi distributions among cordgrass patches are provided in ESA’s Electronic Data
Archive: Ecological Archives E084-039-A2.

APPENDIX C

A table of statistical results for contrasts between the patch interior and edge, and interior and matrix for three A. columbi
response variables (density, proportion parasitized, and per capita hosts parasitized) is provided in ESA’s Electronic Data
Archive: Ecological Archives E084-039-A3.


